Bagaimanacara menemukan persamaan elipsnya?, silahkan teman-teman baca pada artikel "cara menemukan persamaan elips". Kurva elips memiliki dua bentuk tergantung dari sumbu mayornya Sumbu mayor (garis AB) adalah sumbu yang melalui titik fokus $ F_1 $ dan $ F_2 $. Panjang sumbu mayor $ = 2a $. -). Sumbu minor (garis CD) adalah sumbu yangPada postingan sebelumnya tentang cara menentukan gradien garis yang melalui dua titik, telah disinggung bahwa gradien garis yang melalui titik x1, y1 dan x2, y2 dapat dirumuskan dengan m = y2 – y1/x2 – x1. Sekarang bagaimana cara menentukan persamaan garis yang melalui dua titik x1, y1 dan x2, y2? Untuk memudahkan Anda dalam menentukan persamaan garis yang melalui dua titik x1, y1 dan x2, y2, silahkan perhatikan gambar di bawah ini. Gambar di atas merupakan sebuah garis l, di mana garis tersebut melalui titik Ax1, y1 dan titik Bx2, y2. Karena gradien garis yang melalui titik x1, y1 dan x2, y2 dapat dirumuskan dengan m = y2 – y1/x2 – x1, maka persamaan garis yang melalui titik Ax1, y1 yakni y – y1 = y2 – y1/x2 – x1x – x1 atau y – y1x2 – x1 = y2 – y1x – x1 Sedangkan persamaan garis yang melalui titik Bx2, y2 yakni y – y2 = y2 – y1/x2 – x1x – x2 atau y – y2x2 – x1 = y2 – y1x – x2 Rumus persamaan garis y – y1x2 – x1 = y2 – y1x – x1 dan y – y2x2 – x1 = y2 – y1x – x2 akan menghasilkan persamaan yang sama. Oke sekarang kita buktikan hal tersebut dengan contoh soal di bawah ini. Tentukan persamaan garis yang melalui titik A3, –5 dan B–2, –3. Kita harus mencari gradien garis yang melalui titik A3, –5 dan B–2, –3 dengan rumus m = yB – yA/xB – xA m = –3 – –5/ –2 – 3 Persamaan garis yang melalui titik A3, –5 dengan gradien –2/5 adalah y – –5 = –2/5x – 3 y + 5 = –2/5x – 3 y + 5.5 = –2/5x – 3.5 y – –3 = –2/5x – –2 y + 3 = –2/5x + 2 y + 3.5 = –2/5x + 2.5 m = yB – yA/xB – xA m = 3 – –2/ –1 – 3 Persamaan garis yang melalui titik A3, –2 dengan gradien –5/4 adalah y – –2 = –5/4x – 3 y + 2 = –5/4x – 3 y + 2.4 = –5/4x – 3.4 m = yR – yQ/xR – xQ m = 4 – 0/ 3 – –5 Persamaan garis yang melalui titik Q–5, 0 dengan gradien ½ adalah = ½x + 5.2 m = yL – yK/xL – xK m = –1 – 3/ –2 – 7 Persamaan garis yang melalui titik K7, 3 dengan gradien 4/9 adalah y – 3.9 = 4/9x – 7.9 m = yN – yM/xN – xM m = 4 – 1/ –6 – 1 Persamaan garis yang melalui titik M1, 1 dengan gradien –3/7 adalah y – 1 = –3/7x – 1 y – 1.7 = –3/7x – 1.7 <= kedua ruas dikali 7 Demikian postingan Mafia Online tentang cara menentukan persamaan suatu garis yang melalui dua titik x1, y1 dan titik x2, y2. Mohon maaf jika ada kata-kata atau hitungan yang salah dalam postingan di atas. Salam Mafia. TOLONG DIBAGIKAN YA
Misalkanpersamaan garis singgung yang melalui titik A ( 7, 1) dengan gradien m adalah y = m ( x − x 1) + y 1. Sehingga. y = m ( x − 7) + 1 y = m x − 7 m + 1. Substitusi nilai y = m x − 7 m + 1 ke persamaan lingkaran x 2 + y 2 = 25 diperoleh. x 2 + ( m x − 7 m + 1) 2 = 25 x 2 + m 2 x 2 − 14 m 2 x + 2 m x − 49 m 2 − 14 m + 1 = 25
Pada garis y = mx, m merupakan gradien yang besarnya adalah m=yx . Sekarang, ayo perhatikan garis g pada gambar berikut. Pada gambar tersebut, dari titik A ke titik B terdapat suatu perubahan secara tegak sebesar y2 – y1 dan perubahan secara mendatar sebesar x2 – x1. Ini menunjukkan garis g yang melalui titik Ax1, y1 dan Bx2, y2 memiliki kemiringan atau gradien sebesar m=y2−y1x2−x1. Pemahamanmu tentang gradien dapat digunakan untuk mempelajari topik berikut ini. Pada bagian sebelumnya, kamu telah mengetahui bahwa suatu garis yang melalui titik Ax1, y1 dan Bx2, y2 memiliki gradien m=y2−y1x2−x1 . Pada topik sebelumnya, kamu pun telah mempelajari persamaan garis yang melalui titik x1, y1 dan bergradien madalah y – y1 = mx – x1. Dengan mensubstitusi nilai m ke persamaan tersebut, kamu akan mendapatkan y−y1=y2−y1x2−x1x−x1 ⇔y−y1y2−y1=x−x1x2−x1 Dapat disimpulkan bahwa Contoh Ayo, tentukan persamaan garis yang melalui titik 4, 0 dan 0, -2. Jawab Persamaan garis yang melalui titik 4, 0 dan 0, -2 adalah sebagai berikut. y−0−2−0=x−40−4⇔y−2=x−4−4⇔y=−2−4x−4⇔y=12x−4⇔y=12x−2⇔x−2y−4=0 Jadi, persamaan garis yang melalui titik 4, 0 dan 0, -2 adalah x – 2y – 4 = 0.7 menghasilkan persamaan garis melalui sebuah titik dan tegak lurus dengan sebuah garis tertentu; 8. menghasilkan persamaan garis melalui sebuah titik potong dua garis dan sejajar dengan sebuah garis tertentu; 9. menghasilkan persamaan garis melalui sebuah titik potong dua garis dan tegak lurus dengan sebuah garis tertentu; 10.Persamaangaris : 3. Dua buah garis 2ax + 3by - 3 = 0 dan 4x + 15y - 4 = 0 saling sejajar,tentukan hubungan antara a dan b. 4. Tentukan persamaan garis lurus yang melalui titik (-2,1) dan tegak lurus pada garis 2x + y - 3 = 0. Garis lurus yang tegak lurus dengan garis garis 2x + y - 3 = 0 mempunyai gradien m2 ,maka: Jadi terdapat dua titik potong yaitu (6,1) dan (4,1) Kemudian hitung persamaan lingkarannya seperti di bawah ini: (x-5)²+(y-1)²= 1. Persamaan garis singgung yang melalui titik (4,1) terhadap lingkaran L ialah: x1.x+y1.y+a(x1+x)+b(y1+y)+c= 0. 4x+y-½.10(4+x)-½.2(1+y)+25= 0. 1 Menggambar grafik dari persamaan garis lurus. 2. Menjelaskan pengertian gradien garis lurus. 3. Menentukan gradien garis dari persamaan garis y=mx, y =mx+c, ax+by+c=0, dan garis yang melalui dua titik. 4. Menyebutkan sifat- sifat garis yang: a. oDiyTEM.